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Problem Formulation: Example
A continuous problem and its discretisation:

Example: A thin, quadratic metal plate is fixed at every side.
The temporal constant temperature distribution at the boundary of the
metal plate is known.
Which temperature exists at each inner point of the metal plate, if the
system is in a stationary state?

Area

T(x,y)?

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 3 / 34



Problem Formulation: Continuous

The process of heat conduction can be described (approximately) by a
mathematical model.

The geometry of the metal plate is decribed by an area Ω ⊂ R2.

Wanted is the temperature distribution T (x , y) for all (x , y) ∈ Ω.

The temperature T (x , y) for (x , y) on the boundary ∂Ω is known.

Is the metal plate homogeneous (same heat conduction coefficient
everywhere), then the temperature in the inner domain is described by
the partial differential equation

∂2T
∂x2 +

∂2T
∂y2 = 0 , T (x , y) = g(x , y) auf ∂Ω. (1)

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 4 / 34



Problem Formulation: Discrete
In the computer one cannot determine the temperature at every position
(x , y) ∈ Ω (innumerable many), but only at some selected ones.

For that be Ω = [0,1]2 choosen specially (unit square).

Via the parameter h = 1/N, for a N ∈ N, we choose specially the points
(xi , yj) = (ih, jh), for all 0 ≤ i , j ≤ N.

One denotes this set of points also as regular, equidistant grid.
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The points at the boundary ha-
ve been marked with other sym-
bols (squares) as the inner ones
(circles).

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 5 / 34



Discretisation I

How can the temperature Tij at point (xi , yj) be determined?

By a standard method: the method of „Finite Differences“

Idea: The temperature at point (xi , yj) is expressed by the values of the
four neighboring points:

Ti,j =
Ti−1,j + Ti+1,j + Ti,j−1 + Ti,j+1

4
(2)

⇐⇒ Ti−1,j + Ti+1,j − 4Ti,j + Ti,j−1 + Ti,j+1 = 0 (3)

für 1 ≤ i , j ≤ N − 1.

From the form of (3) one recognices, that all (N − 1)2 equations for
1 ≤ i , j ≤ N − 1 together form a linear equation system:

AT = b (4)
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Discretisation II

Here G(A) corresponds exactly to the above drawn grid, if one neglects
the boundary points (squares). The righthand side b of (3) is not even
zero, but contains the temperature values at the boundary!

The such calculated temperature values Ti,j at the points (xi , yj) are not
identical with the solution T (xi , yi) of the partial differential equation (1).
Furthermore applies

|Ti,j − T (xi , yi)| ≤ O(h2) (5)

This error is denoted as „discretisation error“. An increase in the size of N
corresponds such to an exacter temperature calculation.
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Iteration Methods I

We now want to solve the equation system (4) „iteratively“. Herefore we
determine an arbitrary value of the temperature T 0

i,j at each point
1 ≤ i , j ≤ N − 1 (the temperature at the boundary is wellknown).

Starting from this approximate solution we now want to calculate an
improved solution. Herefore we use the formula (2) and set

T n+1
i,j =

T n
i−1,j + T n

i+1,j + T n
i,j−1 + T n

i,j+1

4
für alle 1 ≤ i , j ≤ N − 1. (6)

Obviously the improved values T n+1
i,j can be calculated simultaneously for

each of the indices (i , j), since they only depend on the old values T n
i,j .
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Iteration Methods II

One can indeed show, that

lim
n→∞

T n
i,j = Ti,j (7)

applies.

The error |T n
i,j − Ti,j | in the n-th approximate solution is denoted as

„iteration error“.

How large is this iteration error then? One needs a criterium up to which
n one needs to compute.
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Iteration Methods III
Herefore one considers how well the values T n

i,j fulfill the equation (3), this means
we set

En = max
1≤i,j≤N−1

∣
∣T n

i−1,j + T n
i+1,j − 4T n

i,j + T n
i,j−1 + T n

i,j+1

∣
∣

Commonly one uses this error only relatively, thus one iterates as long until

En
< ǫE0

applies. Then the initial error E0 has been reduced by the reduction factor ǫ.
This leads us to the sequential method:
choose N, ǫ;
choose T 0

i,j ;
E0 = max1≤i,j≤N−1

∣
∣T 0

i−1,j + T 0
i+1,j − 4T 0

i,j + T 0
i,j−1 + T 0

i,j+1

∣
∣;

n = 0;
while (En ≥ ǫE0)
{

for (1 ≤ i, j ≤ N − 1)

T n+1
i,j =

T n
i−1,j+T n

i+1,j+T n
i,j−1+T n

i,j+1
4 ;

En+1 = max1≤i,j≤N−1

∣
∣
∣T n+1

i−1,j + T n+1
i+1,j − 4T n+1

i,j + T n+1
i,j−1 + T n+1

i,j+1

∣
∣
∣;

n = n + 1;
}
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Iteration Methods IV

All that can be written more compact in vector notation. Then AT = b is
the equation system (4) to be solved. The approximation values T n

i,j
correspond to vectors T n each.

Formally T n+1 is calculated as

T n+1 = T n + D−1(b − AT n)

with the diagonal matrix D = diag(A). This scheme is denoted as Jacobi
method.

The error En is constituted by

En = ‖b − A · T n‖∞ ,

where ‖ · ‖∞ is the maximum norm of a vector.
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Parallelisation I

The algorithm allows again a data parallel formulation.

Therefore the (N + 1)2 grid points are subdivided onto a
√

P ×
√

P
processor array by partitioning of the index set I = {0, . . . ,N}.

The partitioning happens here block-wise:

Prozessor

(p,q)

diese nicht
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Parallelisation II

Processor (p,q) computes then the values T n+1
i,j with

(i , j) ∈ {start(p), . . . ,end(p)} × {start(q), . . . ,end(q)}.

To do this, he needs however also the values T n
i,j from the neighboring

processors with
(i , j) ∈ {start(p)− 1, . . . ,end(p) + 1} × {start(q)− 1, . . . ,end(q) + 1}.

These are the nodes, that have been marked with squares in the figure
above!

Each processor stores such beyond its assigned grid points an additional
layer of grid points.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 13 / 34



Parallelisation III
The parallel algorithm therefore consists of the following steps:
initial values T 0

i,j are known by all processors.
while (En

> ǫE0)
{

calculate T n+1
i,j for (i, j) ∈ {start(p), . . . , end(p)} × {start(q), . . . , end(q)};

exchange boundary values (squares) with neighbors;
calculate En+1 for (i, j) ∈ {start(p), . . . , end(p)} × {start(q), . . . , end(q)};
Determine global maximum;
n = n + 1;

}

In the exchange step two neighboring processors exchange values:

(p,q) (p,q+1)
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Parallelisation IV

For this exchange step one uses either asynchronous communication or
synchronous communication with coloration.

We calculate the scalability of a single iteration:

W = TS(N) = N2top =⇒ N =

√

W
top

TP(N,P) =

(
N√
P

)2

top

︸ ︷︷ ︸

calculation

+

(

ts + th + tw
N√
P

)

4
︸ ︷︷ ︸

boundary exchange

+(ts + th + tw ) ld P
︸ ︷︷ ︸

global
comm.: max.

for En

TP(W ,P) =
W
P

+

√
W√
P

4tw
√

top
+ (ts + th + tw ) ld P + 4(ts + th)

TO(W ,P) = PTP − W =

=
√

W
√

P
4tw
√

top
+ P ld P(ts + th + tw ) + P4(ts + th)
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Parallelisation V

Asymptotically we obtain the iso-efficiency function W = O(P ld P) from
the second term, albeit the first term will be dominant for practical values
of N dominant. The algorithm is nearly optimal scalable.

Because of the block-wise partitioning one has a surface-to-volume

effect: N√
P

/(
N√
P

)2
=

√
P

N . In three space dimensions one obtains
(

N
P1/3

)2 / ( N
P1/3

)3
= P1/3

N .

For same N and P the efficiency is such a little bit worse compared to two
dimensions.
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Multigrid Methods I

If we ask about the total efficiency of a method, then the number of
operations is distinctive.

Hereby is
TS(N) = IT (N) · TIT (N)

How many iterationen have now indeed to be executed depends besides
N of course on the used method.

For that one obtains the following classifications:

Jacobi, Gauß-Seidel : IT (N) = O(N2)

SOR with ωopt : IT (N) = O(N)

Conjugated gradients (CG) : IT (N) = O(N)

Hierarchical basis d=2 : IT (N) = O(log N)

Multigrid methods : IT (N) = O(1)

The time for an iteration TIT (N) is there for all schemes in O(Nd ) with
comparable constant (in the region of 1 to 5).
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Multigrid Methods II

We such see, that e.g. the multigrid method is much faster than the
Jacobi method.

Also the parallelisation of the Jacobi method does not help, since it
applies:

TP,Jacobi(N,P) =
O(Nd+2)

P
und TS,MG(N) = O(Nd )

A doubling of N results in a fourfold increase of the effort for the
parallelised Jacobi scheme in comparision to the sequential multigrid
method!

This leads to a fundamental paradigm of parallel programming:
☛

✡

✟

✠

Parallelise the best sequential algo-
rithm, if possible anyhow!
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Multigrid Methods III
Let us consider again the discretisation of the Laplace equation ∆T = 0.
This leads to the linear equation system

Ax = b

Here the vector b is determined by the Dirichlet boundary values. Now be
an approximation of the solution given by x i . Herefore set the iteration
error

ei = x − x i

Because of the linearity of A we can conclude the following:

Aei = Ax
︸︷︷︸

b

−Ax i = b − Ax i =: d i

Here we call d i the defect .
A good approximation for ei is calculated by the solution of

Mv i = d i also v i = M−1d i

Herefore be M easier to solve than A ( in O(N) steps, if x ∈ R
N ).
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Multigrid Methods IV

For special M we get the already known iteration method :

M = I → Richardson

M = diag(A) → Jacobi

M = L(A) → Gauß-Seidel

We obtain the linear iteration method of the form

x i+1 = x i + ωM−1(b − Ax i)

Here the ω ∈ [0,1] is a damping factor .

For the error ei+1 = x − x i+1 applies:

ei+1 = (I − ωM−1A)ei

Here we denote the iteration matrix I − ωM−1A with S.

The scheme is exactly then convergent if applies (limi→∞ ei = 0). This
holds if the largest absolut eigen value of S is smaller than one.
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Smoothing Property I

If the matrix A is symmetric and positive definite, then it has only real,
positive eigen values λk for eigen vectors zk .

The Richardson iteration

x i+1 = x i + ω(b − Ax i)

leads because of M = I to error

ei+1 = (I − ωA)ei

Now we set the damping factor ω = 1
λmax

and consider ei = zk (∀k).

Then we obtain

ei+1 =

(

I − 1
λmax

A
)

zk = zk − λk

λmax
zk =

(

1 − λk

λmax

)

ei

(

1 − λk

λmax

)

=

{

0 λk = λmax

≈ 1 λk small (λmin)
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Smoothing Property II

In the case of small eigenvalues we thus have a bad damping of the error
(it has the order of magnitude of 1 - O ( h2 ) ).

This behaviour is qualitatively identical for the Jacobi and Gauß-Seidel
iteration methods.

But, to small eigenvalues belong long-wave eigenfunctions.

This long-wave errors are such damped only very badly.

With a pictorial view the iteration methods only offer a local smoothing of
the error on which they work, since they get new iteration values only
from values in the local neighborhood.

Fast oscillations could be smoothed out fast, whilst long-wave errors
survive the local smoothing operations quite unmodified.
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Smoothing Property III
For illustration purposes we consider the following example:

The Laplacian equation −∆u = f is discretized via a five-point stencil on a
structured grid. The associated eigenfunctions are sin(νπx) sin(µπy), where
1 ≤ ν and µ ≤ h−1 − 1 apply. We set h = 1

32 and the initial error to

e0 = sin(3πx) sin(2πy) + sin(12πx) sin(12πy) + sin(31πx) sin(31πy).

With ω = 1
λmax

one obtains the damping factors (per iteration) for the
Richardson iteration as 0.984, 0.691 and 0 for the individual eigenfunctions.
The graphs below show the initial error and the error after one resp. five
iterations.
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Smoothing Property IV

From this the idea arises to represent the long wave error on coarser
grids, after smoothing out the fast oscillations.

On this coarser grids the effort is then smaller to smooth the error curve.

Because the curve is somehow smooth after presmoothing, this
restriction onto fewer grid points is well possible.
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Grid Hierarchy I
One constructs thus a complete sequence of grids of different accuracy.
At first one smoothes out on the finest grid the short wave error functions.
Then we restrict to the next coarser grid, and so on.
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Grid Hierarchy II
According to that one obtains a complete sequence of linear systems

Alxl = bl ,

since the number of grid points N and therefore the length of x decreases
on coarser grids.
Of couse one wants to return after this restriction again to the original fine
grid.
Herefore we perform a coarse grid correction.
Let us assume we are on grid level l, thus we consider the LES

Alxl = bl

On this level the iterate x i
l is given with an error of ei

l , thus the error
equation

Aei
l = bl − Alx i

l

Lets suppose, x i
l is the result of ν1 Jacobi, Gauß-Seidel or similar

iterations.
Then ei

l is relatively smooth and thus also properly representable on a
coarser grid, this means it can be interpolated well from a coarser grid to
a finer one.
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Grid Hierarchy III
For this be vl−1 the error on the coarser grid.

Then with good approximation applies

ei
l ≈ Plvl−1

Here Pl is an interpolation matrix (prolongation), that performs a linear
interpolation and changes the coarse grid vector into a fine grid vector.
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Two-grid and Multigrid Methods I
Through combination of the equations above one obtains the equation for
vl−1 by

RlAPlvl−1 = Rl(bl − Alx i
l )

Here is RlAPl =: Al−1 ∈ R
Nl−1×Nl−1 and Rl is the restriction matrix, for that

one takes e.g. Rl = PT
l .

The so called two-grid method consists now of the two steps:
1 ν1 Jacobi iterations (on level l)
2 coarse grid correction x i+1

l = x i
l + PlA−1

l−1Rl(bl − Alx i
l )

The recursive application leads to the multigrid methods.
mgc(l, xl , bl )
{

if ( l == 0 ) x0 = A−1
0 b0;

else {
ν1 iterations one-grid method on Al xl = bl ; // presmoothing
dl−1 = Rl (bl − Al xl );
vl−1 = 0;
for ( g = 1, . . . , γ )

mgc( l − 1, vl−1, dl−1 );
xl = xl + Pl vl−1;
ν2 iterations one-grid method on Al xl = bl ; // postsmoothing

}
}

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 28 / 34



Two-grid and Multigrid Methods II
It is sufficient to set γ = 1, ν1 = 1, ν2 = 0 to get a iteration count of O(1).

A single pass from level l to level 0 and back is denoted as V-cycle:

l

l−1

l−2

1

0

nu_1

nu_1

nu_1

nu_1 nu_2

nu_2

nu_2

nu_2 nu_1

exact

Effort for two-dimensional structured grids: N is number of grid points in a row on
the finest level, and C := top:

TIT(N) = CN2
︸︷︷︸

level l

+
CN2

4
︸ ︷︷ ︸

level l-1

+
CN2

16
+ . . .+ G(N0)

︸ ︷︷ ︸

coarse grid

= CN2 (1 +
1
4
+

1
16

+ . . .)
︸ ︷︷ ︸

4
3

+G(N0) =
4
3

CNl + G(N0)
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Parallelisation I
For data partitioning in the grid hierarchy on the individual processors one has
to consider:

In the coarse grid correction has to be checked, whether communication
is necessary to calculate the node values in the coarse grid.
How to handle the coarsest grids, where the number of unknowns in each
dimension get smaller than the number of processors?

0 1

1/21
1/21/21/2

1
1/21/2

overlapp_0 p_1 p_2 p_3

communication
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Parallelisation II
For illustration of the method we only consider the one-dimensional case. The
distribution in the high-dimensional case is according to the tensor product
(chessboard-like).

The processor limits are choosen at p · 1
P + ǫ, such the nodes, that reside on the

boundary between two processors, are still assigned to the „previous “.

It is to remark, that the defect, that is restringated in the coarse grid correction,
can only calculated on the single master node, but not in the overlap!

To solve the problem with the decreasing node count in the coarsest grids, one
uses successively fewer processors. Be for that a := ld P and again C := top. On
level 0 only one processor calculates, first on level a all are busy.

l

a+1

a

2

1

0

Level

.

.

.

.

.

.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 31 / 34



Parallelisation III
level nodes processors effort
l Nl = 2l−aNa Pl = P T = 2l−aCN0

a+1 Na+1 = 2Na Pa+1 = P T = 2CN0

a Na Pa = P T = CN0

2 N2 = 4N0 P2 = 4P0 T = CN2
4 = CN0

1 N1 = 2N0 P1 = 2P0 T = CN1
2 = C2N0

2 = CN0

0 N0 P0 = 1 G(N0)
be
≈ CN0

Let’s consider the total effort: From level 0 to level a N
P is constant, thus

TP grows like ld P. Therefore we get

TP = ld P · CN0

In the higher levels we get

TP = C · Nl

P
·
(

1 +
1
2
+

1
4
+ . . .

)

= 2C
Nl

P

The total effort is then given by the sum of both partial efforts.
Here we have not taken into account the communication between the
processors.
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Parallelisation IV
How effects the usage of the multigrid method the number of iteration steps to
be executed?

We show the number of used processors against the choice of the grid
spacing, that has been used.
The minimal error reduction has been set to 10−6.

P/l 5 6 7 8
1 10
4 10 10

16 11 12 12
64 13 12 12 12

The table shows the according iteration times in seconds for 2D (factor 4
of grid growths):

P/l 5 6 7 8
1 3.39
4 0.95 3.56
16 0.32 1.00 3.74
64 0.15 0.34 1.03 3.85
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Most Important Knowledge
Jacobi scheme is one of the most simple iteration methods for the
solution of linear equation systems.
For fixed reduction factor ǫ one necessitates a specific number of
iterations IT to reach a certain error reduction.
IT is independent on the choice of the starting value, but depends directly
from the choice of the method (e.g. Jacobi scheme) and the grid spacing
h (thus N).
For the Jacobi method applies IT = O(h−2). For a halvening of the grid
width h one needs the fourfold number of iterations to get the error
reduction ǫ. Since an iteration costs also four times more, the effort has
increased by a factor of 16!
There are a series of better iteration schemes for which e.g. IT = O(h−1),
IT = O(log(h−1)) or even IT = O(1) applies (CG method, hierarchical
basis, multigrid method).
Of course asymptotically (h → ∞) each of these methods is superior to a
parallel naive scheme.
One should therefore at all parallelize the method with optimal sequential
complexity, especially because we want to solve large problems (h small)
on parallel machines.
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