
Iterative Solution of Sparse Equation Systems

Stefan Lang

Interdisciplinary Center for Scientific Computing (IWR)
University of Heidelberg

INF 368, Room 532
D-69120 Heidelberg

phone: 06221/54-8264
email: Stefan.Lang@iwr.uni-heidelberg.de

WS 15/16

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 1 / 33

Topics

Solution of tridiagonal and sparse linear equation systems

Optimal sequential algorithm

Cyclic reduction

Domain decomposition

LU decomposition of sparse matrices

Parallelisation

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 2 / 33

Optimal Sequential Algorithm

As an extreme case of sparse equation systems we consider

Ax = b (1)

with A ∈ RN×N tridiagonal.











∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗











The optimal algorithm is the Gaussian elimination, sometimes also called
Thomas algorithm.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 3 / 33

Optimal Sequential Algorithm

Gaussian elimination for tridiagonal systems

// Forward elimination (here solution, not LU decomposition):
for (k = 0; k < N − 1; k ++) {

l = ak+1,k/ak,k ;
ak+1,k+1 = ak+1,k+1 − l · ak,k+1

bk+1 = bk+1 − l · bk ;
} // (N − 1) · 5 fp operations
// Backward substitution
xN−1 = bN−1/aN−1,N−1;
for (k = N − 2; k ≥ 0; k −−) {

xk = (bk − ak,k+1 · xk + 1)/ak,k ;
} // (N − 1)3 + 1 fp operations

The sequential complexity amounts to

TS = 8Ntf

Obviously the algorithm is strictly sequential!

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 4 / 33

Cyclic Reduction
Consider a tridiagonal matrix with N = 2M (N even).
Idea: Eliminate in each even row k the elements ak−1,k and ak+1,k with
the help of the odd rows above resp. beneath.
Each even row is therefore only coupled with the second previous and
second next; since these are just even, the dimension has been reduced
to M = N/2.
The remaining system is again tridiagonal, and the idea can be applied
recursively.

0 ∗ ⊛ �

1 ∗ ∗ ∗
2 � ⊛ ∗ ⊛ �

3 ∗ ∗ ∗
4 � ⊛ ∗ ⊛ �

5 ∗ ∗ ∗
6 � ⊛ ∗ ⊛ �

7 ∗ ∗ ∗
8 � ⊛ ∗ ⊛

9 ∗ ∗
⊛ are removed, thereby fill-in (�) is generated.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 5 / 33

Cyclic Reduction

Algorithm of cyclic reduction

// Elimination of all odd unknowns in even rows:
for (k = 1; k < N; k += 2)
{ // row k modifies row k − 1

l = ak−1,k/ak,k ;
ak−1,k−1 = ak−1,k−1 − l · ak,k−1;
ak−1,k+1 = −l · ak,k+1; // fill-in
bk−1 = bk−1 − l · bk ;

} // N
2 6tf

for (k = 2; k < N; k += 2);
{ // row k − 1 modifies row k

l = ak,k−1/ak−1,k−1;
ak,k−2 = l · ak−1,k−2; // fill-in
ak,k = l · ak−1,k ;

} // N
2 3tf

All traversals of both loops can be processed in parallel (if we assume a
machine with shared memory)!

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 6 / 33

Cyclic Reduction

Result of this elimination is

0 1 2 3 4 5 6 7 8 9
0 ∗ ∗

1 ∗ ∗ ∗

2 ∗ ∗ ∗

3 ∗ ∗ ∗

4 ∗ ∗ ∗

5 ∗ ∗ ∗

6 ∗ ∗ ∗

7 ∗ ∗ ∗

8 ∗ ∗

9 ∗ ∗

resp. after reordering
1 3 5 7 9 0 2 4 6

1 ∗ ∗ ∗

3 ∗ ∗ ∗

5 ∗ ∗ ∗

7 ∗ ∗

9 ∗

0 ∗ ∗

2 ∗ ∗ ∗

4 ∗ ∗ ∗

6 ∗ ∗

8 ∗

Are the x2k , k = 0, . . . ,M − 1, calculated, then the odd unknowns can be
calculated with
for (k = 1; k < N − 1; k += 2)

xk = (bk − ak,k−1 · xk−1 − ak,k+1 · xk+1)/ak,k ;
// N

2 5tf
xN−1 = (bN−1 − aN−1,N−2 · xN−2)/aN−1,N−1;

completely in parallel.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 7 / 33

Cyclic Reduction

The sequential effort for the cyclic reduction is therefore

TS(N) = (6 + 3 + 5)tf

(
N
2

+
N
4

+
N
8

+ · · ·+ 1
)

= 14Ntf

This is nearly twice as much as the optimal sequential algorithm needs.
Therefore the cyclic reduction can be parallelised. The maximal
achievable efficiency is however

Emax =
8

14
≈ 0.53,

where we have assumed, that all operations are executed optimally
parallel and communication is for free (backward substitution needs only
N
2 processors!). We have not taken into account that cyclic reduction
neccesitates more index calculation!

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 8 / 33

Domain Decomposition Methods
Another approach can be in principle be extended to more general
problem formulations: domain decomposition methods
Be P the number of processors and N = MP + P − 1 for a M ∈ N. We
subdivide then the N × N matrix A in P blocks à M rows with a single row
between the blocks:

M

{

❅
❅
❅

❅
❅❅

❅
❅❅

A0,0

*

0 . . .

1{ * * *

M

{

A1,0=0

* ❅
❅

❅
❅❅

❅
❅
❅❅

❅
❅

❅❅
*

1{ * * *

...

*

*
1{ ** *

M

{

AP−1,0=0

* ❅
❅
❅

❅
❅❅

❅
❅❅

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 9 / 33

Domain Decomposition Methods

The unknowns between the blocks form the interface. Each block is at
most coupled to two interface unknowns.

Now we sort rows and columns of the matrix such that the interface
unknowns are moved to the end. This results in the following shape:

A0,0 A0,I

A1,1 A1,I

. . .
...

AP−1,P−1 AP−1,I

AI,0 AI,1 . . . AI,P−1 AI,I

,

where Ap,p are the M × M tridiagonal partial matrices from A and AI,I is a
P − 1 × P − 1 diagonal matrix. The Ap,I have the general form

Ap,I =





∗
.

∗



 .

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 10 / 33

Domain Decomposition Methods

Idea: Eliminate blocks AI,∗ in the block representation. Thereby AI,I is
modified, more exact the following block representation is created:

A0,0 A0,I

A1,1 A1,I

. . .
...

AP−1,P−1 AP−1,I

0 0 . . . 0 S

,

mit S = AI,I −
P−1∑

p=0

AI,p (Ap,p)
−1 Ap,I .

S is in general denoted as „Schurcomplement“. All eliminations in
∑P−1

p=0
can be executed parallel.

After solution of a system Sy = d for the interface unknowns the inner
unknowns can again be calculated in parallel.

S has dimension P − 1 × P − 1 and is itself sparse, as we can see soon.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 11 / 33

Execution of the Plan
1. Transform Ap,p to diagonal shape.
(ai,j denotes (Ap,p)i,j , if not stated otherwise):

∀p parallel
for (k = 0; k < M − 1; k ++) // lower diagonal
{

l = ak+1,k/ak,k ;
ak+1,k+1 = ak+1,k+1 − l · ak,k+1;

if (p > 0) ap,I
k+1,p−1 = ap,I

k+1,p−1 − l · ak,p−1;
// fill-in left boundary

bp
k+1 = bp

k+1 − l · bp
k ;

} // (M − 1)7tf
for (k = M − 1; k > 0; k −−) // upper diagonal
{

l = ak−1,k/ak,k ;
bp

k−1 = bp
k−1 − l · bp

k ;
if (p > 0) ap,I

k−1,p−1 = ap,I − l · ap,I
k,p−1; // left boundary

if (p < P − 1) ap,I
k−1,p = ap,I

k−1,p − l · ap,I
k,p; // right boundary, fill-in

} // (M − 1)7tf

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 12 / 33

Execution of the Plan
2. Eliminate in AI,∗.

∀p parallel:
if (p > 0)
{ // left boundary P − 1 in interface

I = aI,p
p−1,0/ap,p

0,0 ;

aI,I
p−1,p−1 = aI,I

p−1,p−1 − l · ap,I
0,p−1; // diagonal in S

if (p < P − 1) aI,I
p−1,p = aI,I

p−1,p − l · ap,I
0,p; // upper diag. in S, fill-in

bI
p−1 = bI

p−1 − l · bp
0 ;

}
if (p < P − 1)
{ // right boundary

l = aI,p
p,M−1/ap,p

M−1,M−1;

if (p > 0) aI,I
p,p−1 = aI,I

p,p−1 − l · ap,I
M−1,p−1;

// fill-in lower diag of S
aI,I

p,p = aI,I
p,p − l · ap,I

M−1,p;
bI

p = bI
p − l · bp

M−1;
}

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 13 / 33

Execution of the Plan

3. Solve Schurcomplement.
S is tridiagonal with dimension P − 1 × P − 1. Assume that M ≫ P and solve
sequential. −→ 8Ptf effort.
4. Calculate inner unknowns.
Here, only one diagonal matrix has to be solved per processor.

∀p parallel:
for (k = 0; k < M − 1; k ++)

xp
k = (bp

k − ap,I
k,p−1 · x I

p−1 − ap,I
k,p · x I

p)/ap,p
k,k ;

// M5tf

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 14 / 33

Analysis

Total effort parallel:

TP(N,P) = 14Mtf + O(1)tf + 8Ptf + 5Mtf =

= 19Mtf + 8Ptf
(without communication!)

Emax =
8(MP + P − 1)tf
(19Mtf + 8Ptf)P

≈

≈
︸︷︷︸

für P≪M

1
19
8 + P

M

≤
8

19
= 0.42

The algorithm needs additional memory for the fill-in. Cyclic reduction
works with overwriting of old entries.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 15 / 33

LU Decomposition of Sparse Matrices

What is a sparse matrix

In general one speaks of a sparse matrix, if it has in (nearly) each row
only a constant number of non-zero elements.

If A ∈ RN×N , then A has only O(N) instead of N2 entries.

For large enough N it is then advantegeous regarding computing time
and memory not to process resp. to store this large number of zeros.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 16 / 33

LU Decomposition of Sparse Matrices
Fill-in

While LU decomposition elements, that initially have been zero, can get
non-zero during the elimination process.

On speaks then of „Fill-in“.

This heavily depends on the structure of the matrix. As a extreme
example consider the „arrow matrix“

∗ ∗
∗

∗ 0
∗

∗
. . .

. . .
0 ∗

∗

.

During elimination in the natural sequence (without pivoting) the whole
matrix is „filled-in“.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 17 / 33

LU Decomposition of Sparse Matrices

Reordering of the matrix

If we rearrange the matrix by row and column permutations to the form

∗
∗ 0

∗
. . . ∗

. . .
0 ∗

∗
∗ ∗

,

Obviously no fill-in is produced.

An important point in the LU decomposition of sparse matrices is to find a
matrix ordering such that the fill-in is minimised.

Reordering is strongly coupled to pivoting.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 18 / 33

Pivoting

If the matrix A is symmetric positive definite (SPD), then the LU
factorisation is always numerically stable, and no pivotng is necessary.

→ The matrix can thus be reordered in advance, that the fill-in gets small.

For a general, invertible matrix one will need to use pivoting.

→ Then during elimination a compromise between numerical stability and
fill-in has to be found dynamically.

Therefore nearly all codes restrict to the symmetric positive case and
determine an elimination sequence that minimizes the fill-in in advance.

The exact solution of the minimization problem is NP complete.

→ One therefore uses heuristical methods.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 19 / 33

Graph of a Matrix

Matrix graph

In the symmetric positive case fill-in can be investigated purely by the
zero structure of the matrix.

For an arbitrary, now not necessarily symmetric A ∈ RN×N we define an
undirected graph G(A) = (VA,EA) by

VA = {0, . . . ,N − 1}

(i , j) ∈ EA ⇐⇒ aij 6= 0 ∨ aji 6= 0.

This graph describes the direct dependencies of the unknowns beneath
each other.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 20 / 33

Graph of a Matrix

Example:
0 1 2 3 4 5 6 7 8

0 ∗ ∗ ∗
1 ∗ ∗ ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗ ∗ ∗
4 ∗ ∗ ∗ ∗ ∗
5 ∗ ∗ ∗ ∗
6 ∗ ∗ ∗
7 ∗ ∗ ∗ ∗
8 ∗ ∗ ∗

0 1

3 4

6 7

2

5

8

A G(A)

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 21 / 33

Matrix Ordering Strategies
Nested Disection

An important method to order SPD matrices for the purpose of fill-in
minimisation is the „nested disection“.
Example:
The graph G(A) of the matrix A be a quadratic grid

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 22 / 33

Matrix Ordering Strategies

Now we divide the node set VA in three parts: V 0
A , V 1

A and V I
A, such that

V 0
A and V 1

A are as large as possible,

V I
A is a separator, this means when V I

A is removed from the graph this is
split into two parts. Thus there is no (i , j) ∈ EA, such that i ∈ V 0

A and
j ∈ V 1

A .

V I
A is as small as possible,

The figure shows a possibility for such a partitioning.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 23 / 33

Matrix Ordering Strategies
Now one reorders the rows and columns such that first the indices V 0

A are
present, then V 1

A and finally V I
A.

Then we apply the method recursively to the partial graphs with the node
sets V 0

A and V 1
A .

The method stops, if the graphs has reached a predefined size.
Example graph after two steps:

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 24 / 33

Matrix Ordering Strategies

V 00
A V 01

A V I0
A V 10

A V 11
A V I1

A V I
A

V 00
A ∗ 0 ∗ ∗

V 01
A 0 ∗ ∗ ∗

V I0
A ∗ ∗ ∗ ∗

V 10
A ∗ ∗ ∗

V 11
A ∗ ∗ ∗

V I1
A ∗ ∗ ∗ ∗

V I
A ∗ ∗ ∗ ∗ ∗ ∗ ∗

A, reordered

Complexity of the nested disection

For the example above the nested disection numbering leads to a
complexity of O(N3/2) for the LU decomposition.

For comparisoon one needs with lexicographic numbering (band matrix)
O(N2) operations.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 25 / 33

Data Structures for Sparse Matrices
There are a series of data structures for storage of sparse matrices.

Goal is an efficient implementation of algorithms.

Thus one has to watch out for data locality and as few overhead as
possible by additional index calculation.

An often used data structure is „compressed row storage“

If the N × N matrix has in total M non-zero elements, then one stores the
matrix elements row-wise in an one-dimensional field:

double a[M];

The management of index information happens via three arrays

int s[N], r [N], j[M];

Their meaning shows the realisation of the matrix-vector product y = Ax :

for (i = 0; i < N; i ++) {
y [i] = 0;
for (k = r [i]; k < r [i] + s[i]; k ++)

y [i] += a[k] · x [j[k]];
}.

r provides row start, s the row length, and j the column index.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 26 / 33

Elimination Forms
In the LU decomposition of dense matrices we have used the so-called
kij form of the LU decomposition.

*

0

*

*

k

**
* *

k

k

k

Here in each step k all aik for i > k are eliminated, which requires a
modification of all aij with i , j > k .
This situation is shown left.
In the kji variant one eliminates in step k all akj with j < k .
Here the aki with i ≥ k are modified. Wach out, that the akj have to be
eliminated from left to right!
For the following sequential LU decomposition for sparse matrices we are
going to start from this kji variant.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 27 / 33

Sequential Algorithm

In the following we assume:
◮ The matrix A can be factorized in the given ordering without pivoting. The

ordering has been choosen in an appropriate way to minimize fill-in.
◮ The data structure stores all elements aij with (i, j) ∈ G(A). Because of the

definiton of G(A) applies:

(i, j) 6∈ G(A) ⇒ aij = 0 ∧ aji = 0.

If aij 6= 0, then in every case also aji is stored, also if this is zero. The matrix
does not have to be symmetric.

The extension of the structure of A happens purely because of the
information in G(A). Thus also a akj is formally eliminated, if (k , j) ∈ G(A)
applies. This can possibly create a fill-in aki , albeit applies aki = 0.

The now presented algorithm uses the sets Sk ⊂ {0, . . . , k − 1}, that
contain in step k exactly the column indices, that have to be eliminated.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 28 / 33

Sequential Algorithm

for (k = 0; k < N; k + +) Sk = ∅;
for (k = 0; k < N; k + +)
{

// 1. extend matrix graph
for (j ∈ Sk)
{

G(A) = G(A) ∪ {(k, j)};
for (i = k ; i < N; i + +)

if ((j, i) ∈ G(A))
G(A) = G(A) ∪ {(k, i)};

}

// 2. Eliminate
for (j ∈ Sk)
{ // eliminate ak,j

ak,j = ak,j/aj,j ; // L factor
for (i = j + 1; i < N; i + +)

ak,i = ak,i − ak,j · aj,i ;
}

// 3. update Si for i > k , holds because of symmetry of EA
for (i = k + 1; i < N; i + +)

if ((k, i) ∈ G(A)) // ⇒ (i, k) ∈ G(A)
Si = Si ∪ {k};

}

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 29 / 33

Sequential Algorithm
We consider in an example, how the Sk are mapped.

*

*

* *

*

*0

0

n

m

m n

*

fill−in

At start G(A) shall contain the elements

G(A) = {(0,0), (m,m), (n,n), (0,n), (n,0), (0,m), (m,0)}

For k = 0 is set in step 1 Sm = {0} and Sn = {0}.
Now, next for k = m the am,0 is eliminated.
This generates the fill-in (m,n), which again has in step 3 for k = m as
consequence the instruction Sn = sn ∪ {m}.
Thus applies at start of traversal k = n correctly Sn = {0,m} and in step
1 the fill-in an,m is correctly generated, before the elimination of an,0 is
performed. This is enabled because of the symmetry of GA.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 30 / 33

Parallelisation

LU decomposition of sparse matrices has the following possibilites for a
parallelisation:

coarse granularity: In all 2d partial sets of indices, that has been created
by nested disection of depth d , one can start in parallel with the
elimination. First for the indices, that correspond to the separators,
communication is necessary.

medium granularity: Single rows can be processed in parallel, as soon as
the according pivot row is locally available. This corresponds to the
parallelisation of the dense LU decomposition.

fine granularity: modifications of an individual row can be processed in
parallel, as soon as the pivot line and the multiplicator are available. This
is used for the two-dimensional data distribution in the dense case.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 31 / 33

Parallelisation: Case N = P
Program (LU decomposition for sparse matrices and N = P)
parallel sparse-lu-1
{

const int N = . . . ;
process Π[int k ∈ {0, . . . , N − 1}]
{// (only pseudo code!)

S = ∅; // 1. set S
for (j = 0; j < k; j + +)

if ((k, j) ∈ G(A)) S = S ∪ {j}; // the start
for (j = 0; j < k; j + +) // 2. process row k

if (j ∈ Sk)
{

recv(Πj , r); // wait, until Πj sends the row j
// extend pattern
for (i = j + 1; i < N; i + +)
{

if (i < k ∧ (j, i) ∈ G(A)) // info is in r
S = S ∪ {i}; // processor i will send row i

if ((j, i) ∈ G(A) ∪ {(k, i)}) // info is in r
G(A) = G(A) ∪ {(k, i)};

}
// eliminate ak,j = ak,j/aj,j ; // info is in r
for (i = j + 1; i < N; i + +)

ak,i = ak,i − ak,j · aj,i ; // info is in r
}

for (i = k + 1; i < N; i + +) // 3. send away
if ((k, i) ∈ G(A)) // local info!

send row k at Πi ; // k knowns, that i needs row k.
}

} Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 32 / 33

Parallelisation for N ≫ P

For case N ≫ P

Each processor has now a complete block of rows. Three things have to
happen:

Receive pivot rows of other processors and store them in the set R.

Send finished rows from the send buffer S to the target processors.
Local elimination

◮ choose a row j from the receive buffer R.
◮ eliminate with this row locally all possible ak,j .
◮ if a row is going to be ready, put it into the send buffer (there may be several

target processors).

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 33 / 33

