
IWR, University of Heidelberg Winter term 2015/16
Exercise Sheet 11 14. January 2016

Exercise for Course

Parallel High-Performance Computing
Dr. S. Lang

Return: 21. January 2016 at the beginning of the exercise or earlier

Starting with this exercise we examine a variant of the gravitational N -body problem (GNBP),
this is also introduced in the lecture in more detail. We are going to parallelize the problem with all
techniques, that we learned up to now: tiling, OpenMP, PThreads, MPI and CUDA parallelisation and
will each measure the acquired MFLOPs rate.

Please read first the section at the end of the exercise sheet, where the used variant of the N -body
problem and the provided code is explained. On the homepage you find additional hints regarding the
files. Get confident with the code, that calculates the movement of several bodies in empty space, that
are attracting each other by gravitation.

For each parallel variant an own kernel exists. These can be compiled with the present Makefile
by make. A kernel consists roughly out of the functions accelerate(), leapfrog() and main().
The function leapfrog() is nearly always equal and implements the time stepping scheme. The
most important function is accelerate(), since it performs the main task. This function realises an
algorithms with complexity of N2, this function shall be implemented in different parallel variants.
Some variants are already finished (Sequential, Tiling, OpenMP), for the others this function has to
be worked out in the appropriate kernel.

There are other more complicated approaches that reduce the complexity to O(N logN) or even
O(N). The O(N logN) variant will be discussed in the lecture. Please consider in every case the hints
at the end of the exercise sheet and on the Homepage!

Task 23 N-Body Problem: Sequential, Tiling, OpenMP (5 points)

In the serial variant of the N-body problem the function acceleration() calculates the acceleration
of all bodies. For a body i it has to iterate over all other bodies j = i + 1, . . . , N − 1 and has to get
access to their positions x[j] and masses m[j]. Then it can calculate the accelerations aij = −aji and
accumulates the values in a[i] and a[j].

You find in the archive the sequential, tiling- and OpenMP variants implemented completely. The
according kernel gets as parameter N , the number of time steps to be preformed as well as the choice
of the output steps. The timestep dt is set to dt = 0.001s, this value should be appropriate for our
purposes. Preset are initial conditions with equal distribution. With this run the following simulation
once: ./nbody_vanilla 40 100000 100, and consider the result with Paraview!

First we investigate the tiling approach. In the following figure the serial iteration order for the
calculatin of the accelerations is presented on the left. On the right the optimised ordering for tiling
is visualized with a block size of B = 2.

a00 a01 a02 a03 a04 a05 a06 a07

a10 a11 a12 a13 a14 a15 a16 a17

a20 a21 a22 a23 a24 a25 a26 a27

a30 a31 a32 a33 a34 a35 a36 a37

a40 a41 a42 a43 a44 a45 a46 a47

a50 a51 a52 a53 a54 a55 a56 a57

a60 a61 a62 a63 a64 a65 a66 a67

a70 a71 a72 a73 a74 a75 a76 a77

a00 a01 a02 a03 a04 a05 a06 a07

a10 a11 a12 a13 a14 a15 a16 a17

a20 a21 a22 a23 a24 a25 a26 a27

a30 a31 a32 a33 a34 a35 a36 a37

a40 a41 a42 a43 a44 a45 a46 a47

a50 a51 a52 a53 a54 a55 a56 a57

a60 a61 a62 a63 a64 a65 a66 a67

a70 a71 a72 a73 a74 a75 a76 a77



You find these variants in the kernel file nbody_tiled.c. Recognize how the original loop over i and
j has been split into loops over the blocks and inner loops:

for(I = 0; I < N; I += B)

for(J = I; J < N; J += B)

for(i = I; i < MIN(N, I+B); ++i)

for(j = MAX(i+1,J); j < MIN(N, J+B); ++j)

{

/* code goes here */

}

The OpenMP parallelisation uses the tiled variant and is realized in the Kernel file nbody_openmp.c.

Task

You have to decide for one of the two initial conditions plummer (preset) or cube. Use the choosen
condition for all following tasks. Now perform a perfomance analysis of the sequential variant and of
the one with tiling and OpenMP by measureing the MFLOPs rate. Therefore use values of N >= 100
and different tiling sizes B. Adapt the number of time steps such that several time steps are executed
and calculate the average MFLOPs rate for a single time step. For the test measurements in the pool
(with the previous machines) with tiling no improvement of the MFLOP -Rate has been acchieved.
On other architectures albeit a performance gain as expected could be gained. Now introduce a table
with the measured rates over the problem size. This table will be extended with the values of the other
parallelisation types and then we can compare each of them.

Free Willi Task

To investigate the reason for the missing performance gain in more detail, we want to change the data
layout, to load the data in another sequence into the cache. For this define a data structure Body,
that stores m, x, v and a for each body and create an array Body[n] for the n bodies. The tempo-
rary accelerations can be handled in an array as before. Now change the functionen accelerate and
leapfrog such that they load bodies with complete information. In contradiction to the storage of in-
dividual arrays the components now reside consequtively in memory. Is an improvement measureable?
As alternative realize your own ideas to improve the cache efficency.

Hint

To validate the correctness of parallel variants youd could compare the generated VTK files. Here,
the simulation results can distinguish in accuracy at some positions (1e-14 to 1e-16). The provided
script fuzzy_diff can compare two VTK files regarding a given tolerance, e.g.:

./ fuzzy_diff sequential.vtk parallel.vtk 1e-14

Use the script to validate your parallel implementations.

Task 24 GNBP with MPI (10 points)

In this task we parallelise the N-body problem with MPI. In the MPI version of the code each
process contains only a part of the coordinates and masses. For simplicity you can assume foŕ this
task that N mod p = 0 holds.

Implement a solution scheme for the N -body problem using MPI. An approach would be that
the involved processes commumicate blocking in a ring topology with edge coloring. The skeleton
nbody_mpi.c is already provided, it contains routines to generate the initial conditions and reading
/ writing of the VTK files, that are already parallelised. The existing code initially works for a single
process.

Parallelise now the routine accelerate_mpi, such that it implements the proposed MPI communi-
cation scheme. Perform then calculations with the same parameters and initial conditions as in the
previous task. Measure the computing times and calculate the speedup of the parallel program. Check
also the simulation results (time dependent positions) by comparing the results of the parallel com-
putation with the sequential ones with the fuzzy_diff script. Now enrich your result table with the
measured MFLOPs rates and establish a plot of the MFLOPs rate over N .


